Raghavendra Institute of Pharmaceutical Education and Research (RIPER) (Conferred Autonomous status from the academic year 2016-17)

Accorded under Sections 2 (f) and 12 (B) of UGC act 1956 and Accredited by National Board of Accreditation (NBA) and National Assessment & Accreditation Council (NAAC) Approved by PCI and AICTE, New Delhi

> Academic regulations Program structure & Syllabus

Effective from ACY 2018-2019

MASTER OF PHARMACY

Pharmaceutical Quality Assurance

(Applicable for the batch admitted from 2018 -2019)

: Awarding University: Jawaharlal Nehru Technological University Anantapur (JNTUA)

KR Palli Cross, Near SKU University, Anantapuramu, Andhra Pradesh, India - 515 721 Phone: +91-8554 - 255646, 255548; FAX: +91-8554 - 255646 Website: www.riper.ac.in

PROGRAM OUTCOMES

After successful completion of the program the graduate will be able to

- 1 Interpret the requirements for testing of raw materials, in-process samples, and finished product in accordance with pharmacopoeia standards.
- 2 Predict a variety of Quality Control activities including developing QC policies and Standard Operation Procedures, analyzing and archiving data, and interpreting results.
- 3 Evaluate the performance of a variety of laboratory equipment used in pharmaceutical industrial labs.
- 4 Assess instruments malfunction and troubleshoot the analytical equipment failure in compliance with regulatory requirements.
- 5 Identify and analyze unexpected results during routine analyses and find the solutions based on scientific and regulatory considerations by implementing preventive action and corrective action programs.
- 6 Apply a working knowledge of GMP (Good Manufacturing Practice), GLP, ISO 9000 requirements to the manufacture of pharmaceuticals.
- 7 Understand the concept of quality systems and compliance in the regulated industry and the role of quality assurance.
- 8 Understand the use of controlled documentation.

Course	Course	Credit	Credit	Hrs./	Marks
Code		Hours	Points	wk	
	Semester I				
					100
MQA101T	Modern Pharmaceutical	4	4	4	100
	Analytical Techniques				
MQA102T	Quality Management System	4	4	4	100
MQA103T	Quality Control and Quality Assurance	4	4	4	100
MQA104T	Product Development and Technology	4	4	4	100
	Transfer				
MQA105P	Pharmaceutical Quality Assurance	12	6	12	150
	Practical I				
	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650
	Semester II	L	I		
MQA201T	Hazards and Safety Management	4	4	4	100
MQA202T	Pharmaceutical Validation	4	4	4	100
MQA203T	Audits and Regulatory Compliance	4	4	4	100
MQA204T	Pharmaceutical Manufacturing	4	4	4	100
	Technology				
MQA205P	Pharmaceutical Quality Assurance	12	6	12	150
	Practical II				
	Seminar/Assignment	7	4	7	100
	Total	35	26	35	650

Table – 1: Course of study for M. Pharm. (Pharmaceutical Quality Assurance)

Table - 2: Schemes for internal assessments and end semester examinations

(Pharmaceutical Quality Assurance-MQA)

Course	Course	Internal assessment					End semester exams	
Code							Marks	
						mar	duration	
		Continuou s mode	Sessional of	exams	total	ks		
			marks	durati on				
		Semest	er I			L		L
MQA101T	Modern Pharmaceutical Analytical Techniques	10	15	1hr	25	75	3hr	100
MQA102T	Quality Management System	10	15	1hr	25	75	3hr	100
MQA103T	Quality Control and Quality Assurance	10	15	1hr	25	75	3hr	100
MQA104T	Product Development and Technology Transfer	10	15	1hr	25	75	3hr	100
MQA105P	Pharmaceutical Quality Assurance Practical I	20	30	6hr	50	100	6hr	150
	Seminar/Assignment	-	-	-	-	-	-	100
	I	Total						650
		Semest	er II					
MQA201T	Hazards and Safety Management	10	15	1hr	25	75	3hr	100
MQA202T	Pharmaceutical Validation	10	15	1hr	25	75	3hr	100
MQA203T	Audits and Regulatory Compliance	10	15	1hr	25	75	3hr	100
MQA204T	Pharmaceutical Manufacturing Technology	10	15	1hr	25	75	3hr	100
MQA205P	Pharmaceutical Quality Assurance Practical II	20	30	6hr	50	100	6hr	150
	Seminar/Assignment	-	-	-	-	-	-	100
	1	Total					1	650

PHARMACEUTICALQUALITYASSURANCE (MQA) MODERN PHARMACEUTICAL ANALYTICAL TECHNIQUES (MQA 101T)

Scope

This subject deals with various advanced analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are NMR, Mass spectrometer, IR, HPLC, GC etc.

Objectives

After completion of course student is able to know about chemicals and excipients

- The analysis of various drugs in single and combination dosage forms
- Theoretical and practical skills of the instruments

THEORY

60 hours

1	a. UV-Visible spectroscopy: Introduction, Theory, Laws, Instrumentation	10hrs
	associated with UV-Visible spectroscopy, Choice of solvents and solvent	
	effect and Applications of UV-Visible spectroscopy, Difference/ Derivative	
	spectroscopy.	
	b. IR spectroscopy: Theory, Modes of Molecular vibrations, Sample	
	handling, Instrumentation of Dispersive and Fourier - Transform IR	
	Spectrometer, Factors affecting vibrational frequencies and Applications of	
	IR spectroscopy, Data Interpretation.	
	c. Spectroflourimetry: Theory of Fluorescence, Factors affecting	
	fluorescence (Characterestics of drugs that can be analysed by flourimetry),	
	Quenchers, Instrumentation and Applications of fluorescence	
	spectrophotometer.	
	d. Flame emission spectroscopy and Atomic absorption spectroscopy:	
	Principle, Instrumentation, Interferences and Applications.	
2	NMR spectroscopy: Quantum numbers and their role in NMR, Principle,	10 hrs
	Instrumentation, Solvent requirement in NMR, Relaxation process, NMR	
	signals in various compounds, Chemical shift, Factors influencing chemical	
	shift, Spin-Spin coupling, Coupling constant, Nuclear magnetic double	
	resonance, Brief outline of principles of FT-NMR and 13C NMR.	
	Applications of NMR spectroscopy.	
3	Mass Spectroscopy: Principle, Theory, Instrumentation of Mass	10hrs

	Spectroscopy, Different types of ionization like electron impact, chemical,								
	field, FAB and MALDI, APCI, ESI, APPI Analyzers of Quadrupole and								
	Time of Flight, Mass fragmentation and its rules, Meta stable ions, Isotopic								
	peaks and Applications of Mass spectroscopy.								
4	Chromatography: Principle, apparatus, instrumentation, chromatographic	10hrs							
	parameters, factors affecting resolution, isolation of drug from excipients,								
	data interpretation and applications of the following:								
	Thin Layer chromatography								
	High Performance Thin Layer Chromatography								
	Ion exchange chromatography								
	Column chromatography								
	Gas chromatography								
	High Performance Liquid chromatography								
	• Ultra High Performance Liquid chromatography								
	Affinity chromatography								
	Gel Chromatography								
5	a. Electrophoresis: Principle, Instrumentation, Working conditions, factors	10hrs							
	affecting separation and applications of the following:								
	a) Paper electrophoresis b) Gel electrophoresis c) Capillary electrophoresis								
	d) Zone electrophoresis e) Moving boundary electrophoresis f) Iso electric								
	focusing								
	b. X ray Crystallography: Production of X rays, Different X ray methods,								
	Bragg's law, Rotating crystal technique, X ray powder technique, Types of								
	crystals and applications of X-ray diffraction.								
6	a. Potentiometry: Principle, working, Ion selective Electrodes and	10hrs							
	Application of potentiometry.								
	b. Thermal Techniques: Principle, thermal transitions and Instrumentation								
	(Heat flux and power-compensation and designs), Modulated DSC, Hyper								
	DSC, experimental parameters (sample preparation, experimental								
	conditions, calibration, heating and cooling rates, resolution, source of								
	errors) and their influence, advantage and disadvantages, pharmaceutical								
	applications. Differential Thermal Analysis (DTA): Principle,								
	instrumentation and advantage and disadvantages, pharmaceutical								

applications,

derivative differential thermal analysis (DDTA). TGA: Principle, instrumentation, factors affecting results, advantage and disadvantages, pharmaceutical applications.

REFERENCES

1. Spectrometric Identification of Organic compounds - Robert M Silverstein, Sixth edition, John Wiley & Sons, 2004.

2. Principles of Instrumental Analysis - Doglas A Skoog, F. James Holler, Timothy A. Nieman, 5th edition, Eastern press, Bangalore, 1998.

3. Instrumental methods of analysis – Willards, 7th edition, CBS publishers.

4. Practical Pharmaceutical Chemistry – Beckett and Stenlake, Vol II, 4th edition, CBS Publishers, New Delhi, 1997.

5. Organic Spectroscopy - William Kemp, 3rd edition, ELBS, 1991.

6. Quantitative Analysis of Drugs in Pharmaceutical formulation - P D Sethi, 3rd Edition, CBS Publishers, New Delhi, 1997.

7. Pharmaceutical Analysis - Modern Methods – Part B - J W Munson, Vol 11, Marcel. Dekker Series

8. Spectroscopy of Organic Compounds, 2nd edn., P.S/Kalsi, Wiley estern Ltd., Delhi.

9. Textbook of Pharmaceutical Analysis, KA.Connors, 3rd Edition, John Wiley & Sons, 1982.

10. Textbook of Pharmaceutical Analysis, KA.Connors, 3rd Edition, John Wiley & Sons, 1982.

QUALITY MANAGEMENT SYSTEMS (MQA 102T)

Scope

This course is designed to impart fundamental knowledge and concepts about various quality management principles and systems utilized in the manufacturing industry. It also aids in understanding the quality evaluation in the pharmaceutical industries.

Objectives

At completion of this course it is expected that students will be able to understand-

- $\hfill\square$ The importance of quality
- □ ISO management systems
- \Box Tools for quality improvement
- □ Analysis of issues in quality
- □ Quality evaluation of pharmaceuticals
- $\hfill\square$ Stability testing of drug and drug substances
- □ Statistical approaches for quality

THEORY

60 hours

1	Introduction to Quality: Evolution of Quality, Definition of Quality,	12hrs
	Dimensions of Quality	
	Quality as a Strategic Decision: Meaning of strategy and strategic quality	
	management, mission and vision statements, quality policy, Quality	
	objectives, strategic planning and implementation, McKinsey 7s model,	
	Competitive analysis, Management commitment to quality	
	Customer Focus: Meaning of customer and customer focus, Classification	
	of customers, Customer focus, Customer perception of quality, Factors	
	affecting customer perception, Customer requirements, Meeting customer	
	needs and expectations, Customer satisfaction and Customer delight,	
	Handling customer complaints, Understanding customer behavior, concept	
	of internal and external customers. Case studies.	
	Cost of Quality: Cost of quality, Categories of cost of Quality, Models of	
	cost of quality, Optimising costs, Preventing cost of quality.	
2	Pharmaceutical quality Management: Basics of Quality Management, Total	12 hrs
	Quality Management (TQM), Principles of Six sigma, ISO 9001:2008,	
	9001:2015, ISO 14001:2004, Pharmaceutical Quality Management - ICH	

		-
	Q10, Knowledge management, Quality Metrics, Operational Excellence	
	and Quality Management Review. OSHAS guidelines, NABL certification	
	and accreditation, CFR-21 part 11, WHO-GMP requirements.	
3	Six System Inspection model: Quality Management system, Production	12hrs
	system, Facility and Equipment system, Laboratory control system,	
	Materials system, Packaging and labeling system. Concept of self	
	inspection.	
	Quality systems: Change Management/ Change control. Deviations, Out of	
	Specifications (OOS), Out of Trend (OOT), Complaints - evaluation and	
	handling, Investigation and determination of root cause, Corrective &	
	Preventive Actions (CAPA), Returns and Recalls, Vendor Qualification,	
	Annual Product Reviews, Batch Review and Batch Release. Concept of	
	IPQC, area clearance/ Line clearance.	
4	Drug Stability: ICH guidelines for stability testing of drug substances and	12hrs
	drug products. Study of ICH Q8, Quality by Design and Process	
	development report	
	Quality risk management: Introduction, risk assessment, risk control, risk	
	review, risk management tools, HACCP, risk ranking and filtering	
	according to ICH Q9 guidelines.	
5	Statistical Process control (SPC): Definition and Importance of SPC,	8hrs
	Quality measurement in manufacturing, Statistical control charts - concepts	
	and general aspects, Advantages of statistical control, Process capability,	
	Estimating Inherent or potential capability from a control chart analysis,	
	Measuring process control and quality improvement, Pursuit of decreased	
	process variability.	
6	Regulatory Compliance through Quality Management and development of	4hrs
	Quality Culture	
	Benchmarking: Definition of benchmarking, Reasons for benchmarking,	
	Types of Benchmarking, Benchmarking process, Advantages of	
	benchmarking, Limitations of benchmarking.	
		1

1. Implementing Juran's Road Map for Quality Leadership: Benchmarks and Results, By Al Endres, Wiley, 2000

2. Understanding, Managing and Implementing Quality: Frameworks, Techniques and Cases, By Jiju Antony; David Preece, Routledge, 2002

3. Organizing for High Performance: Employee Involvement, TQM, Reengineering, and Knowledge Management in the Fortune 1000: The CEO Report By Edward E. Lawler; Susan Albers Mohrman; George Benson, Jossey-Bass, 2001

4. Corporate Culture and the Quality Organization By James W. Fairfield- Sonn, Quorum Books, 2001

5. The Quality Management Sourcebook: An International Guide to Materials and Resources By Christine Avery; Diane Zabel, Routledge, 1997

6. The Quality Toolbox, Second Edition, Nancy R. Tague, ASQ Publications

7. Juran's Quality Handbook, Sixth Edition, Joseph M. Juran and Joseph A. De Feo, ASQ Publications

8. Root Cause Analysis, The Core of Problem Solving and Corrective Action, Duke Okes, 2009, ASQ Publications.

QUALITY CONTROL AND QUALITY ASSURANCE (MQA 103T)

Scope

This course deals with the various aspects of quality control and quality assurance aspects of pharmaceutical industries. It covers the important aspects like cGMP, QC tests, documentation, quality certifications, GLP and regulatory affairs.

Objectives

Upon completion of this course the student should be able to

- □ Understand the cGMP aspects in a pharmaceutical industry
- □ To appreciate the importance of documentation
- \square To understand the scope of quality certifications applicable to Pharmaceutical industries
- $\hfill\square$ To understand the responsibilities of QA & QC departments.

THEORY

60 hours

1	Introduction: Concept and evolution and scopes of Quality Control and	12hrs
	Quality Assurance, Good Laboratory Practice, GMP,	
	Overview of ICH Guidelines - QSEM, with special emphasis on Qseries	
	guidelines.	
	Good Laboratory Practices: Scope of GLP, Definitions, Quality assurance	
	unit, protocol for conduct of non clinical testing, control on animal house,	
	report preparation and documentation. CPCSEA guidelines.	
2	cGMP guidelines according to schedule M, USFDA (inclusive of CDER	12 hrs
	and CBER) Pharmaceutical Inspection Convention(PIC),	
	WHO and EMEA covering: Organization and personnel responsibilities,	
	training, hygiene and personal records, drug industry location, design,	
	construction and plant lay out, maintenance, sanitation, environmental	
	control, utilities and maintenance of sterile areas, control of contamination	
	and Good Warehousing Practice.	
3	Analysis of raw materials, finished products, packaging materials, in	12hrs
	process quality control (IPQC), Developing specification (ICH Q6 and Q3),	
	purchase specifications and maintenance of stores for raw materials.	

r		
	In process quality control and finished products quality control for	
	following dosage forms in Pharma industry according to Indian, US and	
	British pharmacopoeias: tablets, capsules, ointments, suppositories, creams,	
	parenterals, ophthalmic and surgical products (How to refer	
	pharmacopoeias).	
4	Documentation in pharmaceutical industry: Three tier documentation,	12hrs
	Policy, Procedures and Work instructions, and records (Formats), Basic	
	principles- How to maintain, retention and retrieval etc. Standard operating	
	procedures (How to write), Master Batch Record, Batch Manufacturing	
	Record, Quality audit plan and reports. Specification and test procedures,	
	Protocols and reports. Distribution records. Electronic data handling.	
	Concepts of controlled and uncontrolled documents.	
	Submission documents for regulators DMFs, as Common Technical	
	Document and Electronic Common Technical Documentation (CTD,	
	eCTD). Concept of regulated and non regulated markets.	
5	Manufacturing operations and controls: Sanitation of manufacturing	12hrs
	premises, mix-ups and cross contamination, processing of intermediates	
	and bulk products, packaging operations, IPQC, release of finished product,	
	process deviations, charge-in of components, time limitations on	
	production, drug product inspection, expiry date calculation, calculation of	
	yields, production record review, change control, sterile products, aseptic	
	process control, packaging, reprocessing, salvaging, handling of waste and	
	scrap disposal.	
	Introduction, scope and importance of intellectual property rights. Concept	
	of trade mark, copyright and patents.	

1. Quality Assurance Guide by organization of Pharmaceutical Procedures of India, 3rd revised edition, Volume I & II, Mumbai, 1996.

2. Good Laboratory Practice Regulations, 2nd Edition, Sandy Weinberg Vol. 69, Marcel Dekker Series, 1995.

3. Quality Assurance of Pharmaceuticals- A compedium of Guide lines and Related materials Vol I & II, 2nd edition, WHO Publications, 1999.

4. How to Practice GMP's – P P Sharma, Vandana Publications, Agra, 1991.

5. The International Pharmacopoeia – vol I, II, III, IV & V - General Methods of Analysis and Quality specification for Pharmaceutical Substances, Excepients and Dosage forms, 3rd edition, WHO, Geneva, 2005.

6. Good laboratory Practice Regulations – Allen F. Hirsch, Volume 38, Marcel Dekker Series, 1989.

7. ICH guidelines

8. ISO 9000 and total quality management

9. The drugs and cosmetics act 1940 – Deshpande, Nilesh Gandhi, 4th edition, Susmit Publishers, 2006.

10. QA Manual – D.H. Shah, 1st edition, Business Horizons, 2000.

11. Good Manufacturing Practices for Pharmaceuticals a plan for total quality control – Sidney H. Willig, Vol. 52, 3rd edition, Marcel Dekker Series.

12. Steinborn L. GMP/ISO Quality Audit Manual for Healthcare Manufacturers and Their Suppliers, Sixth Edition, (Volume 1 - With Checklists and Software Package). Taylor & Francis; 2003.

13. Sarker DK. Quality Systems and Controls for Pharmaceuticals. John Wiley & Sons; 2008.

14. Packaging of Pharmaceuticals.

15. Schedule M and Schedule N.

PRODUCT DEVELOPMENT AND TECHNOLOGY TRANSFER (MQA 104T)

Scope

This deal with technology transfer covers the activities associated with Drug Substance, Drug Product and analytical tests and methods, required following candidate drug selection to completion of technology transfer from R&D to the first receiving site and technology transfer related to post-marketing changes in manufacturing places.

Objectives

Upon completion of this course the student should be able to

 $\hfill\square$ To understand the new product development process

□ To understand the necessary information to transfer technology from R&D to actual manufacturing by sorting out various information obtained during R&D

□ To elucidate necessary information to transfer technology of existing products between various manufacturing places

THEORY

60 hours

1	Principles of Drug discovery and development: Introduction, Clinical	12hrs
	research process. Development and informational content for	
	Investigational New Drugs Application (IND), New Drug Application	
	(NDA), Abbreviated New Drug Application (ANDA), Supplemental New	
	Drug Application (SNDA), Scale Up Post Approval Changes (SUPAC) and	
	Bulk active chemical Post approval changes (BACPAC), Post marketing	
	surveillance, Product registration guidelines – CDSCO, USFDA.	

 purity, impurity profiles, particle size, shape and surface area. Solubility, Methods to improve solubility of Drugs: Surfactants & its importance, co- solvency. Techniques for the study of Crystal properties and polymorphism. Pre-formulation protocol, Stability testing during product development. Pilot plant scale up: Concept, Significance, design, layout of pilot plant scale up study, operations, large scale manufacturing techniques (formula, equipment, process, stability and quality control) of solids, liquids, 	2hrs
 solvency. Techniques for the study of Crystal properties and polymorphism. Pre-formulation protocol, Stability testing during product development. Pilot plant scale up: Concept, Significance, design, layout of pilot plant scale up study, operations, large scale manufacturing techniques (formula, 	2hrs
polymorphism. Pre-formulation protocol, Stability testing during product development.3Pilot plant scale up: Concept, Significance, design, layout of pilot plant scale up study, operations, large scale manufacturing techniques (formula,12	2hrs
development. 3 Pilot plant scale up: Concept, Significance, design, layout of pilot plant scale up study, operations, large scale manufacturing techniques (formula, 12	2hrs
 Pilot plant scale up: Concept, Significance, design, layout of pilot plant scale up study, operations, large scale manufacturing techniques (formula, 	2hrs
scale up study, operations, large scale manufacturing techniques (formula,	2hrs
equipment, process, stability and quality control) of solids, liquids,	
semisolid and parenteral dosage forms.	
New era of drug products: opportunities and challenges.	
4 Pharmaceutical packaging: Pharmaceutical dosage form and their 12	2hrs
packaging requirments, Pharmaceutical packaging materials, Medical	
device packaging, Enteral Packaging, Aseptic packaging systems,	
Container closure systems, Issues facing modern drug packaging, Selection	
and evaluation of Pharmaceutical packaging materials.	
Quality control test: Containers, closures and secondary packing materials.	
5 Technology transfer: Development of technology by R & D, Technology 12	2hrs
transfer from R & D to production, Optimization and Production,	
Qualitative and quantitative technology models.	
Documentation in technology transfer: Development report, technology	
transfer plan and Exhibit.	

1. The process of new drug discovery and development. I and II Edition (2006) by Charles G. Smith, James T and O. Donnell. CRC Press, Group of Taylor and Francis.

2. Leon Lac Lachman, Herbert A. Liberman, Theory and Practice of Industrial Pharmacy. Marcel Dekker Inc. New York.

3. Sidney H Willing, Murray M, Tuckerman. Williams Hitchings IV, Good manufacturing of pharmaceuticals (A Plan for total quality control) 3rd Edition. Bhalani publishing house Mumbai.

4. Tablets Vol. I, II, III by Leon Lachman, Herbert A. Liberman, Joseph B. Schwartz, 2nd Edn. (1989) Marcel Dekker Inc. New York.

5. Text book of Bio- Pharmaceutics and clinical Pharmacokinetics by Milo Gibaldi, 3rd Edn,

Lea & Febriger, Philadelphia.

6. Pharmaceutical product development. Vandana V. Patrevale. John I. Disouza. Maharukh T.Rustomji. CRC Press, Group of Taylor and Francis.

7. Dissolution, Bioavailability and Bio-Equivalence by Abdou H.M, Mack Publishing company, Eastern Pennsylvania.

8. Remingtons Pharmaceutical Sciences, by Alfonso & Gennaro, 19th Edn.(1995)OO2C Lippincott; Williams and Wilkins A Wolters Kluwer Company, Philadelphia.

9. The Pharmaceutical Sciences; the Pharma Path way 'Pure and applied Pharmacy' by D. A Sawant, Pragathi Books Pvt. Ltd.

10. Pharmaceutical Packaging technology by D.A. Dean. E.R. Evans, I.H. Hall. 1st Edition(Reprint 2006). Taylor and Francis. London and New York.

QUALITY ASSURANCE PRACTICAL - I

(MQA 105P)

PRACTICALS

1. Analysis of Pharmacopoeial compounds in bulk and in their formulations (tablet/ capsules/ semisolids) by UV Vis spectrophotometer

2. Simultaneous estimation of multi-drug component containing formulations by UV spectrophotometry

3. Experiments based on HPLC

4. Experiments based on Gas Chromatography

5. Estimation of riboflavin/quinine sulphate by fluorimetry

6. Estimation of sodium/potassium by flame photometry or AAS

7. Case studies on

□ Total Quality Management

□ Six Sigma

□ Change Management/ Change control. Deviations,

 \Box Out of Specifications (OOS)

 \Box Out of Trend (OOT)

□ Corrective & Preventive Actions (CAPA)

□ Deviations

8. Development of Stability study protocol

9. Estimation of process capability

10. In process and finished product quality control tests for tablets, capsules, parenterals and

semisolid dosage forms.

11. Assay of raw materials as per official monographs

- 12. Testing of related and foreign substances in drugs and raw materials
- 13. To carry out pre formulation study for tablets, parenterals (2 experiment).
- 14. To study the effect of pH on the solubility of drugs, (1 experiment)
- 15. Quality control tests for Primary and secondary packaging materials
- 16. Accelerated stability studies (1 experiment)
- 17. Improved solubility of drugs using surfactant systems (1 experiment)
- 18. Improved solubility of drugs using co-solvency method (1 experiment)
- 19. Determination of Pka and Log p of drugs.

HAZARDS AND SAFETY MANAGEMENT (MQA 201T)

Scope

This course is designed to convey the knowledge necessary to understand issues related to different kinds of hazard and their management. Basic theoretical and practical discussions integrate the proficiency to handle the emergency situation in the pharmaceutical product development process and provides the principle based approach to solve the complex tribulations.

Objectives

At completion of this course it is expected that students will be able to

□ Understand about environmental problems among learners.

□ Impart basic knowledge about the environment and its allied problems.

□ Develop an attitude of concern for the industry environment.

□ Ensure safety standards in pharmaceutical industry

□ Provide comprehensive knowledge on the safety management

□ Empower an ideas to clear mechanism and management in different kinds of hazard management system

□ Teach the method of Hazard assessment, procedure, methodology for provide safe industrial atmosphere.

THEORY

60 hours

1	Multidisciplinary	nature	of	environmental	studies:	Natural	Resources,	12hrs
---	-------------------	--------	----	---------------	----------	---------	------------	-------

	Renewable and non-renewable resources, Natural resources and associated	
	problems,	
	a) Forest resources; b) Water resources; c) Mineral resources; d) Energy	
	resources; e) Land resources	
	Ecosystems: Concept of an ecosystem and Structure and function of an	
	ecosystem. Environmental hazards: Hazards based on Air, Water, Soil and	
	Radioisotopes	
2	Air based hazards: Sources, Types of Hazards, Air circulation maintenance	12 hrs
	industry for sterile area and non sterile area,	
	Preliminary Hazard Analysis (PHA) Fire protection system: Fire	
	prevention, types of fire extinguishers and critical Hazard management	
	system	
3	Chemical based hazards: Sources of chemical hazards, Hazards of Organic	12hrs
	synthesis, sulphonating hazard, Organic solvent hazard, Control measures	
	for chemical hazards, Management of combustible gases, Toxic gases and	
	Oxygen displacing gases management, Regulations for chemical hazard,	
	Management of over-Exposure to chemicals and TLV concept.	
4	Fire and Explosion: Introduction, Industrial processes and hazards	12hrs
	potential, mechanical electrical, thermal and process hazards. Safety and	
	hazards regulations, Fire protection system: Fire prevention, types of fire	
	extinguishers and critical Hazard management system mechanical and	
	chemical explosion, multiphase reactions, transport effects and global rates.	
	Preventive and protective management from fires and explosionelectricity	
	passivation, ventilation, and sprinkling, proofing, relief systems -relief	
	valves, flares, scrubbers	
5	Hazard and risk management: Self-protective measures against workplace	12hrs
	hazards. Critical training for risk management, Process of hazard	
	management, ICH guidelines on risk assessment and Risk management	
	methods and Tools	
	Factory act and rules, fundamentals of accident prevention, elements of	
	safety programme and safety management, Physicochemical measurements	
	of effluents, BOD, COD, Determination of some contaminants, Effluent	
	treatment procedure, Role of emergency services.	
1		

1. Y.K. Sing, Environmental Science, New Age International Pvt, Publishers, Bangalore

2. "Quantitative Risk Assessment in Chemical Process Industries" American Institute of Chemical Industries, Centre for Chemical Process safety.

 Bharucha Erach, The Biodiversity of India, Mapin Pu blishing Pvt. Ltd., Ahmedabad – 380 013, India,

4. Hazardous Chemicals: Safety Management and Global Regulations, T.S.S. Dikshith, CRC press

PHARMACEUTICAL VALIDATION (MQA 202T)

Scope

The main purpose of the subject is to understand about validation and how it can be applied to industry and thus improve the quality of the products. The subject covers the complete information about validation, types, methodology and application.

Objectives

At completion of this course, it is expected that students will be able to understand

- $\hfill\square$ The concepts of calibration, qualification and validation
- $\hfill\square$ The qualification of various equipments and instruments
- \Box Process validation of different dosage forms
- \Box Validation of analytical method for estimation of drugs
- □ Cleaning validation of equipments employed in the manufacture of pharmaceuticals

THEORY

60 hours

1	Introduction to validation: Definition of Calibration, Qualification and	10hrs
	Validation, Scope, frequency and importance. Difference between	
	calibration and validation. Calibration of weights and measures.	
	Advantages of Validation, scope of Validation, Organization for	
	Validation, Validation Master plan, Types of Validation, Streamlining of	
	qualification & Validation process and Validation Master Plan.	
	Qualification: User requirement specification, Design qualification, Factory	

	Acceptance Test (FAT)/Site Acceptance Test (SAT), Installation	
	qualification, Operational qualification, Performance qualification, Re-	
	Qualification (Maintaining status- Calibration Preventive Maintenance,	
	Change management).	
2	Qualification of manufacturing equipment: Dry Powder Mixers, Fluid Bed	10 hrs
	and Tray dryers, Tablet Compression (Machine), Dry heat	
	sterilization/Tunnels, Autoclaves, Membrane filtration, Capsule filling	
	machine.	
	Qualification of analytical instruments: UV-Visible spectrophotometer,	
	FTIR, DSC, GC, HPLC, HPTLC, LC-MS.	
3	Qualification of laboratory equipments: Hardness tester, Friability test	10hrs
	apparatus, tap density tester, Disintegration tester, Dissolution test	
	apparatus	
	Validation of Utility systems: Pharmaceutical water system & pure steam,	
	HVAC system, Compressed air and nitrogen.	
4	Process Validation: Concept, Process and documentation of Process	10hrs
	Validation. Prospective, Concurrent & Retrospective Validation, Re	
	validation criteria, Process Validation of various formulations (Coated	
	tablets, Capsules, Ointment/Creams, Liquid Orals and aerosols.), Aseptic	
	filling: Media fill validation, USFDA guidelines on Process Validation- A	
	life cycle approach.	
	Analytical method validation: General principles, Validation of analytical	
	method as per ICH guidelines and USP.	
5	Cleaning Validation: Cleaning Method development, Validation of	10hrs
	analytical method used in cleaning, Cleaning of Equipment, Cleaning of	
	Facilities. Cleaning in place (CIP). Validation of facilities in sterile and	
	non-sterile plant.	
	Computerized system validation: Electronic records and digital signature -	
	21 CFR Part 11 and GAMP	
6	General Principles of Intellectual Property: Concepts of Intellectual	10hrs
	Property (IP), Intellectual Property Protection (IPP), Intellectual Property	
	Rights (IPR); Economic importance, mechanism for protection of	
	Intellectual Property –patents, Copyright, Trademark; Factors affecting	

choice of IP protection; Penalties for violation; Role of IP in pharmaceutical industry; Global ramification and financial implications. Filing a patent applications; patent application forms and guidelines. Types patent applications-provisional and non provisional, PCT and convention patent applications; International patenting requirement procedures and costs; Rights and responsibilities of a patentee; Practical aspects regarding maintaining of a Patent file; Patent infringement meaning and scope. Significance of transfer technology (TOT), IP and ethics-positive and negative aspects of IPP; Societal responsibility, avoiding unethical practices.

REFERENCES

1. B. T. Loftus & R. A. Nash, "Pharmaceutical Process Validation", Drugs and Pharm Sci. Series, Vol. 129, 3rd Ed., Marcel Dekker Inc., N.Y.

2. The Theory & Practice of Industrial Pharmacy, 3rd edition, Leon Lachman, Herbert A. Lieberman, Joseph. L. Karig, Varghese Publishing House, Bombay.

3. Validation Master plan by Terveeks or Deeks, Davis Harwood International publishing.

4. Validation of Aseptic Pharmaceutical Processes, 2nd Edition, by Carleton & Agalloco,

5. (Marcel Dekker).

6. Michael Levin, Pharmaceutical Process Scale-Up", Drugs and Pharm. Sci. Series, Vol. 157,2nd Ed., Marcel Dekker Inc., N.Y.

7. Validation Standard Operating Procedures: A Step by Step Guide for Achieving Compliance in the Pharmaceutical, Medical Device, and Biotech Industries, Syed Imtiaz Haider

8. Pharmaceutical Equipment Validation: The Ultimate Qualification Handbook, Phillip A. Cloud, Interpharm Press

9. Validation of Pharmaceutical Processes: Sterile Products, Frederick J. Carlton (Ed.) and James Agalloco (Ed.), Marcel Dekker

10. Analytical Method validation and Instrument Performance Verification by Churg Chan, Heiman Lam, Y.C. Lee, Yue. Zhang, Wiley Interscience.

11. Huber L. Validation and Qualification in Analytical Laboratories. Informa Healthcare

12. Wingate G. Validating Corporate Computer Systems: Good IT Practice for

Pharmaceutical Manufacturers. Interpharm Press

13. LeBlanc DA. Validated Cleaning Technologies for Pharmaceutical Manufacturing. Interpharm Press

AUDITS AND REGULATORY COMPLIANCE (MQA 203T)

Scope

This course deals with the understanding and process for auditing in pharmaceutical industries. This subject covers the methodology involved in the auditing process of different in pharmaceutical industries.

Objectives

Upon completion of this course the student should be able to

- \Box To understand the importance of auditing
- $\hfill\square$ To understand the methodology of auditing
- \Box To carry out the audit process
- \Box To prepare the auditing report
- \Box To prepare the check list for auditing

THEORY

60 hours

1	Introduction: Objectives, Management of audit, Responsibilities, Planning	12hrs
	process, information gathering, administration, Classifications of	
	deficiencies	
2	Role of quality systems and audits in pharmaceutical manufacturing	12 hrs

	environment: cGMP Regulations, Quality assurance functions, Quality	
	systems approach, Management responsibilities, Resource, Manufacturing	
	operations, Evaluation activities, Transitioning to quality system approach,	
	Audit checklist for drug industries.	
3	Auditing of vendors and production department: Bulk Pharmaceutical	12hrs
	Chemicals and packaging material Vendor audit,	
	Warehouse and weighing, Dry Production: Granulation, tableting, coating,	
	capsules, sterile production and packaging.	
4	Auditing of Microbiological laboratory: Auditing the manufacturing	12hrs
	process, Product and process information, General areas of interest in the	
	building raw materials, Water, Packaging materials.	
5	Auditing of Quality Assurance and engineering department: Quality	12hrs
	Assurance Maintenance, Critical systems: HVAC, Water, Water for	
	Injection systems, ETP.	

1. Compliance auditing for Pharmaceutical Manufacturers. Karen Ginsbury and Gil Bismuth, Interpharm/CRC, Boca Raton, London New York, Washington D.C.

2. Pharmaceutical Manufacturing Handbook, Regulations and Quality by Shayne Cox Gad. Wiley-Interscience, A John Wiley and sons, Inc., Publications.

3. Handbook of microbiological Quality control. Rosamund M. Baird, Norman A. Hodges, Stephen P. Denyar. CRC Press. 2000.

4. Laboratory auditing for quality and regulatory compliance. Donald C. Singer, Raluca-Ioana Stefan, Jacobus F. Van Staden. Taylor and Francis (2005).

PHARMACEUTICAL MANUFACTURING TECHNOLOGY (MQA 204T)

Scope

This course is designed to impart knowledge and skills necessary to train the students with the industrial activities during Pharmaceutical Manufacturing.

Objectives

At completion of this course it is expected that students will be able to understand,

□ The common practice in the pharmaceutical industry developments, plant layout and production planning

□ Will be familiar with the principles and practices of aseptic process technology, non sterile manufacturing technology and packaging technology.

□ Have a better understanding of principles and implementation of Quality by design (QbD) and process analytical technology (PAT) in pharmaceutical manufacturing

THEORY

60 hours

1	Pharmaceutical industry developments: Legal requirements and Licenses	12hrs
	for API and formulation industry, Plant location- Factors influencing.	
	Plant layout: Factors influencing, Special provisions, Storage space	

		r
	requirements, sterile and aseptic area layout.	
	Production planning: General principles, production systems, calculation of	
	standard cost, process planning, routing, loading, scheduling, dispatching	
	of records, production control.	
2	Aseptic process technology: Manufacturing, manufacturing flowcharts, in	12 hrs
	process-quality control tests for following sterile dosage forms: Ointment,	
	Suspension and Emulsion, Dry powder, Solution (Small Volume & large	
	Volume).	
	Advanced sterile product manufacturing technology : Area planning &	
	environmental control, wall and floor treatment, fixtures and machineries,	
	change rooms, personnel flow, utilities & utilities equipment location,	
	engineering and maintenance.	
	Process Automation in Pharmaceutical Industry: With specific reference to	
	manufacturing of sterile semisolids, Small Volume Parenterals & Large	
	Volume Parenterals (SVP & LVP), Monitoring of Parenteral manufacturing	
	facility, Cleaning in Place (CIP), Sterilization in Place (SIP), Prefilled	
	Syringe, Powdered Jet, Needle Free Injections, and Form Fill Seal	
	Technology (FFS).	
	Lyophilization technology: Principles, process, equipment.	
3	Non sterile manufacturing process technology: Manufacturing,	12hrs
	manufacturing flowcharts, in process-quality control tests for following	
	Non-Sterile solid dosage forms: Tablets (compressed & coated), Capsules	
	(Hard & Soft).	
	Advance non-sterile solid product manufacturing technology: Process	
	Automation in Pharmaceutical Industry with specific reference to	
	manufacturing of tablets and coated products, Improved Tablet Production:	
	Tablet production process, granulation and pelletization equipments,	
	continuous and batch mixing, rapid mixing granulators, rota granulators,	
	spheronizers and marumerisers, and other specialized granulation and	
	drying equipments. Problems encountered.	
	Coating technology: Process, equipments, particle coating, fluidized bed	
	coating, application techniques. Problems encountered.	
4	Containers and closures for pharmaceuticals: Types, performance, assuring	12hrs

	quality of glass; types of plastics used, Drug plastic interactions, biological	
	tests, modification of plastics by drugs; different types of closures and	
	closure liners; film wrapper; blister packs; bubble packs; shrink packaging;	
	foil / plastic pouches, bottle seals, tape seals, breakable seals and sealed	
	tubes; quality control of packaging material and filling equipment, flexible	
	packaging, product package compatibility, transit worthiness of package,	
	Stability aspects of packaging. Evaluation of stability of packaging	
	material.	
5	Quality by design (QbD) and process analytical technology (PAT): Current	12hrs
	approach and its limitations. Why QbD is required, Advantages, Elements	
	of QbD, Terminology: QTPP. CMA, CQA, CPP, RLD, Design space,	
	Design of Experiments, Risk Assessment and mitigation/minimization.	
	Quality by Design, Formulations by Design, QbD for drug products, QbD	
	for Drug Substances, QbD for Excipients, Analytical QbD. FDA initiative	
	on process analytical technology. PAT as a driver for improving quality	
	and reducing costs: quality by design (QbD), QA, QC and GAMP. PAT	
	guidance, standards and regulatory requirements.	

1. Lachman L, Lieberman HA, Kanig JL. The theory and practice of industrial pharmacy, 3rd ed., Varghese Publishers, Mumbai 1991.

2. Sinko PJ. Martin's physical pharmacy and pharmaceutical sciences, 5 th ed., B.I. Publications Pvt. Ltd, Noida, 2006.

Lieberman HA, Lachman L, Schwartz JB. Pharmaceutical dosage forms: tablets Vol. I-III,
 nd ed., CBS Publishers & distributors, New Delhi, 2005.

4. Banker GS, Rhodes CT. Modern Pharmaceutics, 4 th ed., Marcel Dekker Inc, New York, 2005.

5. Sidney H Willing, Murray M, Tuckerman. Williams Hitchings IV, Good manufacturing of pharmaceuticals (A Plan for total quality control) 3rd Edition. Bhalani publishing house Mumbai.

6. Indian Pharmacopoeia. Controller of Publication. Delhi, 1996.

7. British Pharmacopoeia. British Pharmacopoeia Commission Office, London, 2008.

8. United States Pharmacopoeia. United States Pharmacopeial Convention, Inc, USA, 2003.

9. Dean D A, Evans E R and Hall I H. Pharmaceutical Packaging Technology. London, Taylor & Francis, 1st Edition. UK.

10. Edward J Bauer. Pharmaceutical Packaging Handbook. 2009. Informa Health care USA Inc. New york.

11. Shaybe Cox Gad. Pharmaceutical Manufacturing Handbook. John Willey and Sons, New Jersey, 2008.

QUALITY ASSURANCE PRACTICAL – II PRACTICALS (MQA 205P)

- 1. Organic contaminants residue analysis by HPLC
- 2. Estimation of Metallic contaminants by Flame photometer
- 3. Identification of antibiotic residue by TLC
- 4. Estimation of Hydrogen Sulphide in Air.
- 5. Estimation of Chlorine in Work Environment.
- 6. Sampling and analysis of SO2 using Colorimetric method
- 7. Qualification of following Pharma equipment
- a.Autoclave
- b.Hot air oven
- c.Powder Mixer (Dry)
- d.Tablet Compression Machine
- 8. Validation of an analytical method for a drug
- 9. Validation of a processing area

- 10. Qualification of at least two analytical instruments
- 11. Cleaning validation of one equipment
- 12. Qualification of Pharmaceutical Testing Equipment (Dissolution testing apparatus,

Friability Apparatus, Disintegration Tester)

- 13. Check list for Bulk Pharmaceutical Chemicals vendors
- 14. Check list for tableting production.
- 15. Check list for sterile production area
- 16. Check list for Water for injection.
- 17. Design of plant layout: Sterile and non-sterile
- 18. Case study on application of QbD
- 19. Case study on application of PAT

BOS seal